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Abstract

The paper considers the problem of spectral clustering (both constrained and uncon-
strained) and how to incorporate self-learning into it. We perform clustering iteratively
by adding new constraints derived from the clustering results in the previous iterations.
To our knowledge, this is the only self-learning algorithm that uses the results of the
clustering algorithm directly as constraints. Additionally, it is the only algorithm with
linear time and memory complexity that solves this problem. The results of experiments
on real data confirm the theoretical findings.
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1 Introduction

The goal of a clustering algorithm is to partition the input data set into groups
called clusters based on a similarity measure, so that the similarity of examples within
groups is maximized and the similarity of examples from different groups is minimized.
Therefore, a clustering problem can be defined as a minimization of a cost function,
which penalizes the dissimilarity within clusters and the similarity between different
clusters. In this paper, we will consider the problem of spectral clustering, where the
cost function can be defined as a relaxation of the normalized cut [5] which only uses
the spectrum (eigenvalues and eigenvectors) of a graph matrix to derive clusters.

The spectral clustering algorithm offers several advantages compared to the other
clustering algorithms: simple cost function with an analytic solution, easy implementa-
tion and the ability to derive arbitrarily shaped clusters. However, spectral clustering
has the squared time complexity with respect to the number of examples and it heavily
and solely relies on the quality of the similarity measure.

Several approaches have been suggested to mitigate those problems. In order to re-
duce (linearize) the time complexity of the algorithm, the application of the Nystrom
method [3] is suggested. Incorporating oracle knowledge (such as user guide that repre-
sents constraints) can reduce reliance on the similarity measure. This has been studied
in literature under the definition of constrained spectral clustering [6]. In this paper, we
will improve the algirithm from [4] the time complexity of which is a lot lower compared
to its competitors. In [4] the set of input examples and the set of constraints are coded
as a multi-layer graph and the solution is defined as unconstrained spectral clustering
on the multi-layer graph, where a multi-layer graph is a set of graphs with a common
vertex set.

However, access to a good oracle knowledge is usually rare. Because of this, meth-
ods of its approximation are developed, and therefore those methods will be used to
learn additional constraints. Those methods belong to a class of self-learning clustering
algorithms. To our knowledge, the only algoirithm that incorporates self-learning with
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spectral clustering is found in [7]. It is based on a matrix completion method. However,
the time and memory complexity of this algorithm is squared in the number of instances
and therefore intractable for large data sets. Therefore, in this paper we will consider the
fast self-learning spectral clustering with low time complexity. Our algorithm iteratively
learns new constraints and uses them to improve clustering. Based on previous research,
this is the first self-learning spectral clustering algorithm with the time complexity linear
in the number of items no matter the number of constraints.

2 Algorithm

Spectral clustering belongs to a class of graph clustering algorithms, and therefore
the input set of that algorithm is a graph G = (V,W ) (or a multi-layer graph) and a
number of desired clusters k. Set V = {v1, v2, . . . , vn} is the set of n graph vertices, and
the matrix W is the similarity (weight) matrix. The degree matrix is a diagonal matrix
such that the degree of vertex vi is on the i-th place on the diagonal.

Graph clustering represents a vertex partition that satisfies some condition (min-
imization of the sum of edges within the partition and maximization of the sum of
edge weights between different partitions). Spectral clustering satisfies these conditions
by finding the orthogonal matrix (spectral embedding) U ∈ Rn×k that minimizes the

tr(UTLU), where the matrix L is called normalized Laplacian L = D−
1
2 (D −W )D−

1
2 .

Cluster assignments are derived from a matrix U via the k-means algorithm on the
normalized rows of U .

A multi-layer graph with m layers is a set of m individual graphs MG = {(Gi =
(V,Ei,Wi))i≤m} with the same set of vertices. For each layer a Laplacian matrix Li

and its corresponding spectral embeding Ui ∈ Rn×k are computed. According to [1]
spectral clustering on a multi layer graph is equivalent to the ordinary spectral clustering
where instead of a Laplacian matrix we are using a modified Laplacian matrix Lmod =∑m

i=1 Li − α
∑m

i=1 UiU
T
i (α is a regularization parameter).

We shall now review constrained spectral clustering on graphs. In this case, input
is a graph G = (V,W ) and a set of constraints PC. A constraint will be written in the
following form e = {vi, vj , t, type}. A number t ∈ (0, 1) is the constraint weight. A type
type ∈ {ML,CL} of constraint is either must link (vertices must be in the same cluster)
or cannot link (vertices cannot be in the same cluster).

A solution (from [4]) for the problem of constrained spectral clustering is an uncon-
strained spectral clustering on a three-layer graph MG = {(Gi = (V,Ei,Wi))i≤3 with
different adjacency matrices. In the first layer we have an input graph W1 = W , the
second layer is must link and the third one is cannot link layer:

W2(i, j) =

{
t, if {vi, vj , 1, type = ML} ∈ PC
0, otherwise (1)

W3(i, j) =

{
0, if {vi, vj , 1, type = CL} ∈ PC
t, otherwise (2)

The constrained problem is defined as unconstrained on MG. However, in order for
time complexity to be linear in n, the Nystrom [3] method is applied.
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2.1 Self-learning spectral clustering

In this section we will explain our formulation of self-learning spectral clustering,
and show the algorithm we have created to solve this problem.

There are two cases that are presented in this research, the case of an unconstrained
spectral clustering (input is a graph G = (V,W )) and the case of a constrained spectral
clustering (input is a three layer graph that encodes the constraints MG). If, in the
unconstrained case, we encode the input as a multi layer graph, only the first layer
would not be empty so MG would indicate the same clustering as G. Therefore, in the
following text, when we discuss an input graph we are referring to a three layer graph
MG = {(Gi = (V,Ei,Wi))i≤3.

Simply formulated, a self-learning algorithm learns a set of additional information
(such as constraints) that improves the learning of a target task. We will use results of
a clustering as additional constraints, and our algorithm will be iterative. In contrast to
the algorithm from [7] which uses the results of a clustering to find a constraint matrix
of low rank, our algorithm will use the results of a clustering as additional layers in the
multi layer graph without any additional assumptions.

In our case the first layer is derived from the input set, the second and the third
layers are derived from the set of constraints, and additional layers will be self learned
and derived from the clustering results. Therefore, the first three layers should be
more trustworthy than the following layers. So, we will change the modified Laplacian
slightly: Lmod =

∑m
i=1 αi(Li − αUiU

T
i ), where αi ∈ (0, 1) are additional weights that

will determine the trustworthiness of the layer.
A discussion of the graph layers follows: Initially, we have 3 layers: the input graph,

the must link layer, and the cannot link layer. Then we perform a clustering and, for
every pair of vertices (vi, vj) from the same cluster, we put W4ij = 1 and otherwise 0.

Now spectral clustering is performed again on the graph containing only the first
3 layers and the results are similarly added into the multi layer graph as a 5th layer,
and so forth. This process is iteratively performed t times, and the final clustering is
the solution of the clustering the entire multi layer graph. The time complexity of this
algorithm (with the application of the Nystrom method) is O(t(nk2 + tkm)), and the
memory complexity is O(tnl). To our knowledge this is the only self-learning spectral
clustering that achieves the linear time complexity.

3 Experimental results

We evaluate the performance of our algorithm on real world data sets: Postures and
Covtype 1 and Orange2(only attributes without missing data) data set. The adjacency

matrix is formed using a RBF kernel k(x, y) = exp(− ||x−y||
2

2 ). Constraints are derived
from a random subset A of input feature vectors for which we assume a complete knowl-
edge. If items vi, vj ∈ A belong to the same class then we add {vi, vj , t, type = ML}
to the PC, otherwise we add {vi, vj , t, type = CL} to the PC. We evaluated the re-
sults using a Rand Index RI = tp+tn

tp+fp+tn+fn where tp, fp, tn, fn stand for true positive,
false positive, true negative and false negative, respectively. We compare our algorithm
Fast Self-Learning - Spectral Clustering) with the algorithm Constrained Spectral -
MultiLayer) as well as the Spectral learning algorithm from [7] (which is an extension
of an algorithm from [2]) and present the result in the following tables. Note that the

1http://archive.ics.uci.edu/ml
2http://www.causality.inf.ethz.ch/activelearning.php
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Table 1: Performance comparison of algorithms csp-ml, fsl-sc and sl on the following real world
data sets: Postures, Orange and Covtype. We report an average rand index and its variance.

Data set Known Label Percentage csp-ml fsl-sc sl

Postures

No constraints 0.6907 ± 0.0095 0.6927 ± 0.0031 0.6907 ± 0.0095
6 0.6920 ± 0.0127 0.6969 ± 0.0113 0.2565 ± 0.0019
10 0.7004 ± 0.0106 0.7130 ± 0.0079 0.3530 ± 0.002
15 0.7099 ± 0.0120 0.7298 ± 0.0007 0.4250 ± 0.0038

Orange

No constraints 0.4940 ± 0.0018 0.4959 ± 0.0002 0.4940 ± 0.0018
6 0.4962 ± 0.0033 0.4990 ± 0.0030 0.4950 ± 0.0081
10 0.5073 ± 0.0059 0.5158 ± 0.0030 0.5061 ± 0.0092
15 0.5202 ± 0.0065 0.5322 ± 0.0013 0.5294 ± 0.0154

Covtype

No constraints 0.4807 ± 0.0137 0.4983 ± 0.0082 0.4807 ± 0.0137
6 0.4968 ± 0.0029 0.5002 ± 0.0031 0.4565 ± 0.0644
10 0.5137 ± 0.0178 0.5311 ± 0.0211 0.4909 ± 0.0519
15 0.5367 ± 0.0199 0.5672 ± 0.0191 0.5351 ± 0.0521

main algorithm from [7] is prohibitive on thess data sets because of its memory require-
ment. We show that self-learning new constraints improves the results. New constraints
in the algorithm fsl-sc are learned in 10 iterations. Results are presented in table (1).

4 Conclusions

We implemented a new algorithm for self-learning spectral clustering, which can be
used for both the unconstrained and constrained spectral clustering. Firstly note that the
performance is improved as we add more constraints, which is one of the requirements of
constrained clustering. Additionally, our algorithm outperformed its competitors across
all data sets. We deduce that the largest margin between our algorithm and its competi-
tors is achieved with a larger number of constraints. That means that our algorithm is
able to better utilize the constraints compared to other algorithms. Furthermore, even
in the case with no constraints we note that self-learning improved the results. Finally,
our algorithm also has a smaller variance.

To our knowledge this is the only self-learning spectral clustering algorithm with
linear time and memory complexity.
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