
1

1st Serbian International Conference on Applied Artificial Intelligence (SICAAI)
Kragujevac, Serbia, May 19-20, 2022

USING EFFICIENT PROGRAMMING TO CREATE EFFICIENT
PROGRAMS: COMBINING EASILY PARALLELIZABLE LANGUAGES
WITH EFFICIENT C/C++/ASM LIBRARIES

Saša N. Malkov

Faculty of Mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
e-mail: smalkov@matf.bg.ac.rs

Abstract:

In contemporary software development, it is often not enough for programs to be correct
and efficient. The number of developers is not growing as fast as the need for new programs,
so, in order to be as efficient as possible it is important to speed up the development process.
One of the steps in that direction is the use of so-called scripting languages. However,
although scripting languages provide for more efficient programming, they do not usually
result in particularly efficient programs.

We present our work on two techniques for improving the efficiency of programs written
in scripting languages: (1) combining the main programs written in scripting languages with
some parts of the program written in C/C++/ASM, and (2) techniques for implicit
parallelization of programs or some parts of the programs written in scripting languages.

Our research is conducted on the programming language Wafl. The results are already
used in bioinformatics research projects at the Faculty of Mathematics.

Keywords: combining programming languages, marshaling, parallelization, implicit
parallelization, Wafl

1. Introduction

1.1 Program Efficiency

Program efficiency is, in addition to correctness, one of the most important characteristics
of a program. By program efficiency we traditionally mean that programs are able to do work
with minimal use of computer system resources – primarily considering CPU time and
runtime memory. In order for a program to be efficient, it is crucial that it is based on a good
and efficient algorithm, but it is also very important that the programming language and
accompanying tools support its efficient execution. Since the advent of multiprocessor
computers and especially multi-core CPUs, the program efficiency usually includes the ability
to execute some parts of the program concurrently [1].

1.2 Programming Efficiency

In contemporary software development, it is often not enough for programs to be correct

and efficient, but the process of program development also has to be as efficient as possible in
terms of developers` time. The number of developers is not growing as fast as the need for
new programs, so it is important to simplify and shorten the development cycle in order to
accelerate development. This is why so-called scripting languages [2] are often used today.
Scripting programming languages are usually interpreted (rather than compiled) and often
have somewhat simpler and less formal syntax. Scripting languages are especially useful for
developing programs of smaller size and complexity, and even more so in cases where it is

S.N.Malkov, Using Efficient Programming To Create Efficient Programs

2

necessary to write a large number of such programs. Typical examples of such use are data
preparation, data processing and analysis of data mining results.

1.3 Programming Language Wafl

The research we present here is conducted on the Wafl programming language [3]. Wafl

is a strongly typed functional programming language with implicit type inference. It is a
general purpose language, although it was originally designed for Web development. It was
designed and developed by the author, which facilitates the implementation of various
researches.

2. Materials and Methods

The cost of efficient programming in script languages is usually paid by obtaining less
efficient programs. In this paper, we present our research on how to enable the writing of
efficient programs with efficient programming in script languages.

Two main ways to increase program efficiency are discussed:
• combining scripting languages with efficient languages, by using the parts of the

programs written in C / C ++ / assembler in main programs written in Wafl, and
• implicit (or as implicit as possible) parallelization of Wafl programs.

2.1 Combining Wafl Programs and C/C++/Asm Libraries

One of the most direct ways to make a program more efficient is to perform optimization
by writing the most sensitive parts of the program in machine language (assembler). When
programming in a scripting language, it is often sufficient to write such parts of the program
in C/C++. Writing selected parts of the program in C/C++ has practically the same effect as
extending the scripting language function library. Such a combination, if well designed, can
lead to very high performance efficiency, even virtually indistinguishable from programs
written entirely in C/C++.

Combining the parts of programs written in different languages brings with it several
problems, the most complex of which is transforming the memory representation of data
(arguments and results) from a form understandable in one language to a form understandable
in another language [4], so-called marshaling. It can be done in several different ways,
including:

• explicit marshaling in program code – explicit writing of program elements that
transform data when writing or calling subroutines written in another language;

• declarative marshaling – when developers explicitly inform either the library object or
the library users in a certain way about how it is necessary to transform and use the
data, usually by specifying the data on the arguments and result types, or

• implicit marshaling – when the corresponding part of the program code or the
corresponding declaration is (mostly) automatically generated, so that the
programmer does not have to worry about it.

It is clear that implicit marshaling is the most desirable form. Therefore, when designing
the interface for combining Wafl programs with classes and subroutines written in
C/C++/ASM, one of the main goals was to provide the implicit marshaling in order to
facilitate the work of programmers.

The variadic template technique [5] has been applied, to allow functions with different
numbers and types of arguments to be automatically registered appropriately. Moreover, most
of this work is done in the module compilation phase. When a program written in Wafl uses a
module written in C++, the validation of the number and types of arguments is automatically
performed prior to the binding. Also, if necessary, the inline function that performs the
marshaling is performed automatically. Implicit marshaling simplifies the combining of Wafl
and C/C++/ASM and makes the binding safer, while achieving at least the same efficiency as

S.N.Malkov, Using Efficient Programming To Create Efficient Programs

3

explicit data transformation.

int string_distance(const std::string& s1, const std::string& s2);
void LibraryImplementation::InitLibrary() {
 *this << "slib"
 << REG_FN("dist", string_distance,
 "Compute two strings edit-distance.")
 << ... ;
}

Program code 1. Example of C++ module slib, with single exported function.
Function string_distance is declared and implicitly registered with its appropriate type.

All marshaling details are implicit.

After building the module (libwslib.so for Linux or libwslib.dll for Windows), the library

modul and function defined in it are used similarly to the libraries written in Wafl (see
Program code 2).

... slib::dist(...) ...
where {
 slib = extern library 'slib';
}

Program code 2. Example of using slib module and dist function in Wafl.

2.3 Parallelization of Wafl Programs

Parallelization of scripting languages is generally simpler than the parallelization of
compiled languages, because it can be done at a slightly higher level of abstraction. In certain
cases, it is even possible to completely ignore some complex aspects of parallelization, such
as the explicit concern of locking or isolating data or parts of a program. This is especially the
case when it comes to functional programming languages where arguments are mostly read-
only.

The parallelization of Wafl programs is supported in four different ways, which can even
be combined. In all cases, the Wafl parallelization engine decides on some of the important
aspects of the parallelization (the number of threads, the number of jobs and others):

1. In its most basic form, parallelization is based on the explicit use of parallel versions of
some functions.

2. Another possibility is to declare a part of the program in which parallelization should
be supported, by enclosing the parallelized expression by function parallel. In this
case, all functions contained (directly or indirectly) in the enclosed expression are
candidates for parallelization.

3. If only a function name is enclosed by the function parallel, then the function call and
its definition are candidates to be parallelized.

4. The different aspects of the parallelization can be configured by service configuration,
including command line options.

... map_par(...) // (1) using a parallel function map_par
... parallel(...map(...)...) // (2) parallelization of enclosed code
... parallel(map)(...) // (3) parallelization of enclosed function

Program code 3. Example of parallelizations of Wafl code.

The Wafl library includes parallel implementations of many functions. The most
important of these are: map, reduce and filter. The parallel implementations have the “_par”
suffix (see Program code 3). When implicit parallelization is used, then Wafl parallelization
engine decides if a sequential or a parallel version will be used.

S.N.Malkov, Using Efficient Programming To Create Efficient Programs

4

3. Results and Conclusions

The applied concepts have been tested on several examples and used in several research
projects (for example, for mass computation of edit-distances between protein sequences).
Table 1 presents the program efficiency comparison for Mandelbrot set benchmark [6].

Results [s] C

P
y
t
h
o
n

Python Python
parallel Wafl Wafl

parallel Wafl/C Wafl/C
parallel

Mandelbro
t 2.36

1
5
7.
1
9

157.19 22.27 70.04 11.37 2.38 0.24

Table 1. Mandelbrot set benchmark result, with 400x160 points and 60,000 iterations.
Measured on PC with single CPU with 6 cores and 12 threads.

Single point computation is implemented in C (last two columns).

Our results justify and motivate further work on the development of techniques for

implicit parallelization and advanced integration of functional scripting languages and
C/C++/ASM. In many cases, the development and especially the parallelization of Wafl
programs are much faster than for C/C++/ASM programs. If certain parts of a program are
implemented in C/C++/ASM and integrated in the Wafl main program, the efficiency level of
C/C++/ASM programs is achievable.

The presented techniques are already in use in bioinformatics research at the Faculty of
Mathematics.

References

 Breshears C, The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel
Applications. O’Reilly Media, Inc., 2009.

 Scott ML, Programming Language Pragmatics, 2nd ed. Morgan Kaufmann, 2006.
 Malkov S, Customizing a Functional Programming Language for Web Development.

Computer Languages, Systems & Structures 36(4):345-351, 2010.
 Python 3.10.4 documentation, Extending Python with C or C++,

https://docs.python.org/3/ extending/extending.html
 Lippman SB, Lajoie J, Moo BE, C++ Primer, 5th ed. Addison Wesley, 2012.
 Baker G, Mandelbrot Language Shootout Results, https://ggbaker.ca/prog-

langs/mandel/ results.html

