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Abstract: 
 

Due to numerous advantages, concrete-filled steel tubular (CFST) columns have an 
increasingly important role in the civil engineering industry. Because of the expensive 
experimental testing of these members, it is beneficial to provide prognostic models. In this 
study, an artificial neural network (ANN) model for predicting the axial compressive strength 
of square CFST columns has been developed. A dataset of 1022 samples (685 stub columns 
and 337 slender columns) was collected from available literature in order to compare the 
accuracy of the fast predictive Levenberg-Marquardt algorithm (LM) and Eurocode 4 (EC4) 
design code. Analyses showed that the ANN model has better accuracy than EC4. Over a whole 
domain, the ANN model has higher coefficient of determination (R2), and lower root mean 
squared error (RMSE). The same conclusion is valid when two separate datasets are considered: 
one for stub columns and the other for slender columns. The benefit of the ANN model is its 
applicability in a broader range of column parameters. At the same time, EC4 puts several 
limitations on its use and gives satisfactory results only in limited circumstances. Empirical 
equations have also been proposed from the best ANN model, which is useful for engineering 
practice. 
 
Keywords: machine learning, artificial neural network, Levenberg-Marquardt algorithm, 
backpropagation, Eurocode 4, empirical equations 
 
1. Introduction 
 

In recent years, artificial intelligence (AI) and machine learning (ML) techniques have 
found increasing application in many research areas. In the first place, the reasons for that are 
less computational efforts for solving different kinds of problems and good correspondence 
between price and required performance, which may be a very significant obstacle in some 
branches. 

Many authors have tried to implement various AI techniques to predict the ultimate 
compressive strength of rectangular or circular concrete-filled steel tubular (CFST) columns. 
ML algorithms such as Decision tree (DT) and Random forest (RF) were employed by Đorđević 
and Kostić [1] for the prediction of circular CFST columns, but with a relatively small amount 
of data (236 stub columns and 272 slender columns), and with coefficients of determination 
(R2) of 0.989 and 0.985 for stub and slender columns, respectively. For the same problem, 
efficient implementation of artificial neural networks (ANN) was done by Zarringol et al. [2] 
with better performance for circular than for rectangular columns, but with two hidden layers. 
Also, Zarringol et al. [3] made analyses with a different number of neurons in one hidden layer 
using ANN and support vector regression (SVR). Vu et al. [4] developed a gradient tree 
boosting (GTB) predictive algorithm with similar size of a dataset as in our study (1017 
samples) and compared it with the support vector machines (SVM), RF and DT models with 
obtained (R2) values of 0.999, 0.965, 0.971, 0.963 respectively for all data. Additional 
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alternative methods for successful determination of the axial capacity of CFST columns, such 
as fuzzy logic (FL) or multivariate adaptive regression splines (MARS), were recommended by 
Moon et al. [5] and Luat et al. [6], but with a small database in both cases (123 and 141 samples). 
This work aims to develop a fast and efficient prognostic model using ANNs with the 
Levenberg-Marquardt (LM) algorithm, whose accuracy for the prediction of square CFST 
columns may exceed the current limitations given by Eurocode 4 (EC4). Besides, the empirical 
equations obtained from the most suitable ANN model are proposed. 
 
2. Dataset description 
 

In order to compare the results of two different approaches for calculation of ultimate 
compressive strength of square CFST columns and appropriate training and testing of 
developed ANN models, an experimental dataset with 1022 samples is collected from the 
available literature. A larger part of the database was extracted from Denavit [7] (470 samples), 
and Thai et al. [8] (263 samples), and the other parts were from Goode [9] (166 samples) and 
Belete [10] (123 samples). 

The database consists of the samples exposed to pure compression only, without load 
eccentricity and steel reinforcement.  

Table 1 shows the ranges and distributions of parameters Beq, t, L, fy,𝑓𝑓𝑐𝑐
′ in the experimental 

tests. Values of square section width (Beq), the thickness of the steel tube (t), length of column 
(L), steel yield stress ( fy) and concrete compressive strength (𝑓𝑓𝑐𝑐

′), are in the range: 60-750 mm, 
0.7-16 mm, 180-4500 mm, 115-835 MPa, 6.99-164.1 MPa, respectively. As can be seen, the 
database contains a broad range of test samples, according to both geometric and material 
properties. It is important to note that some references reported concrete compressive strength 
obtained from the cube samples ( fcu). In that case, these values are converted to a cylinder (𝑓𝑓𝑐𝑐

′) 
using the equation proposed by L’Hermite [11]: 

 𝑓𝑓𝑐𝑐
′ = �0.76 + 0.21 ⋅ log10(fcu / 19.6)� ⋅ fcu  (1) 

 
Parameter Unit Mean Std.Dev. Min. Max. 

Beq mm 157.71 70.32 60 750 
t mm 4.47 2.25 0.70 16 
L mm 936.85 859.47 180 4500 
 fy MPa 388.22 162.06 115 835 

𝑓𝑓𝑐𝑐
′ MPa 52.10 31.01 6.99 164.1 

Nexp kN 2318.13 2302.55 105.40 24294 

Table 1. Range and distribution of test parameters 

 

Figure 1 illustrates the distribution of the parameters through histograms of the dataset. It 
is visible from the Figure 1, that the highest density of the data for each parameter fulfils the 
Eurocode 4 (EC4) requirements for mechanical and geometric properties. 
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(a) Beq [mm] 

 
(b) t [mm] 

 
(c) L [mm] 

 

 
(d)  f

y
 [MPa] 

 
(e) 𝑓𝑓𝑐𝑐

′ [MPa] 
 

(f) Nexp [kN] 
Figure 1. Distribution of dataset parameters 

Goode [9] and Thai et al. [8] proposed conditions to separate CFST members into stub and 
slender columns. Square CFST members belong to the stub columns for length-to-width ratio 
less or equal to 4 (i.e. L / Beq ≤ 4) and to slender columns for the ratio higher than 4 (i.e. 
L / Beq > 4). Since each of the parameters from the database has different units and ranges, 
before training the artificial neural networks (ANNs) it is recommended to normalize the data 
in a preprocessing phase to avoid favouritism of the parameters with a greater range as in [3]. 

'
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Following the applied activation function in the ANN model, features were normalized to lie in 
the range between -1 and 1 using the mapminmax function [12]: 

 y = ( ymax - ymin ) ⋅ ( x - xmin ) / ( xmax - xmin ) + ymin (2) 

where y is a normalized value of x,  xmax and xmin are maximum and minimum original values,  
ymax and ymin are expected maximum and minimum values, 1 and -1. 

 

3. Methodology 
 
3.1 Eurocode 4 
 

Eurocodes are a series of standards that provide different procedures for designing 
buildings, structural members, etc. EC4 [13] design code is referenced in this work, related to 
the design of composite structures, which are the subject of this research. The plastic resistance 
to compression Npl,Rd  for rectangular and square columns, defined in Section 2, is calculated 
according to the EC4 provisions as follows:  

 Npl,Rd = As ⋅ fy + Ac ⋅ 𝑓𝑓𝑐𝑐
′ (3) 

where As and Ac are the area of the structural steel section and cross-sectional area of concrete, 
respectively. 

The design value of ultimate compressive strength Nu
EC4 should satisfy the following 

condition: 

 Nu
EC4 = χ ⋅ Npl,Rd  (4) 

where χ is the reduction factor for the flexural buckling mode, defined as: 

 χ = 1 / [Φ + �Φ2 - λ2�  ] ≤ 1 (5) 

Parameter Φ and the relative slenderness λ� are calculated as: 

 Φ= 0.5 ⋅ [1 + 0.21 ⋅ �λ� - 0.2� + λ�2] (6) 

 λ �= �Npl,Rd / Ncr (7) 

where  Ncr is elastic critical force for flexural buckling mode calculated with the effective 
flexural stiffness EIeff  obtained without reinforcement steel. 

 EIeff = Es ⋅ Is + 0.6 ⋅ Ec⋅ Ic (8) 

One of the mentioned limitations of the EC4 is that steel contribution ratio δ should satisfy 
the following conditions: 

 0.2 ≤ δ = As ⋅ fy / Npl,Rd ≤ 0.9 (9) 

According to the Eurocode 4 (EC4) provisions, Table 2 presents geometrical and 
mechanical limitations for estimating the axial compressive strength of CFST columns. The 
first limitation from Table 2 refers to the condition when the local buckling of the steel tube can 
be neglected. 
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Design code Equation Limitation 
 
 

Eurocode 4 
(EC4) 

 
 

Npl,Rd = As ⋅ f
y
 + Ac ⋅ f

c
'  

 
 

Beq/t ≤ 52⋅�235/fy 

235 ≤  fy ≤ 460 MPa 

20 ≤  fc
 ' ≤ 50 MPa 

0.2 ≤ δ ≤ 0.9 

Table 2. Ranges of the geometric and mechanical properties in EC4 design code 

 

3.2 Artificial neural networks 

 
People have strived to create intelligent devices using the human nervous system as a model 

for many years. The first system based on the principle of the nervous system was applied by 
McCulloch and Pitts [14]. Further development was accompanied by constructing a multilayer 
neural network, the so-called multilayer perceptron, which was used in this work [15]. The 
basic structure of the artificial neural network consists of three layers, input, hidden and output 
layers with the corresponding number of neurons. The number of layers and neurons determines 
the model's performance and may be the possible cause of potential overfitting with a low 
training error and high testing error. In general, to develop a model with the best performance, 
firstly, it is necessary to tune the hyperparameters using the trial-and-error method. 

Within the hidden layers, it is necessary to define the activation function, thus obtaining the 
following connection between the neurons in a feed-forward network: 

 zi
l = ∑ wik

l  ⋅m
k=1  ak

l-1+bi
l (10) 

 ai
l = f l(zi

l) (11) 

where zi
l   is the input signal in the current layer l, wik

l  are the weights, ak
l-1 are the outputs from 

the previous layer, bi
l are the biases of the current layer and  ai

l is an output signal. 

Tuning the hyperparameters according to the Levenberg-Marquardt (LM) algorithm is 
described in the following section. 

 

3.3 Levenberg-Marquardt algorithm 

 
The Levenberg-Marquardt (LM) algorithm belongs to the high-performance algorithms 

based on the numerical optimization technique such as conjugate gradient and quasi-Newton 
methods. LM is several times faster than a classic backpropagation (BP) algorithm based on 
gradient descent. Opposed to a standard BP algorithm, LM was designed to skip the calculation 
of the second-order derivatives of the Hessian matrix, using an approximation with the first-
order (Jacobian) matrix, and update the network as follows [16]: 

 xk+1 = xk-[JT ⋅ J + μ ⋅ I]-1 ⋅ JT ⋅ e (12) 

where J - Jacobian matrix, μ - adaptive (damping) parameter, I – identity matrix, JT ⋅ e – 
gradient,  xk – current value of variable x, xk+1 – updated value of variable x 

Besides the damping parameter 𝜇𝜇, two additional and important parameters (μinc and μdec) 
allow the reduction of performance function at each iteration. The ANN was trained with the 
dataset divided into the training, validation and test set with the following percentage amount 
of data (70%, 15%, 15%). The hyperparameters of the best neural network, tuned by a random 
search and by detecting the error in the validation set are: 

-  Architecture of the network: 5-12-1 
- Activation functions: hyperbolic-tangent for the hidden layer and linear for the output 

layer 
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- μ=0.1, μdec=0.01,  μinc=10  

Activation functions used for hidden and output layers are shown in the following 
equations: 

 f(x) = ( e x - e -x ) / ( e x + e -x ) (13) 

 f(x) = x (14) 

During the analysis of different ANN models, several sets of hyperparameters and 
architectures were examined, and the best three architectures, according to the error values of 
the validation set, were further explored (5-10-1, 5-12-1, 5-14-1). A detailed description of the 
search for an appropriate model is described in Section 5. Figure 2 graphically presents the 
adopted artificial neural network architecture with one hidden layer and 12 neurons, finally 
endorsed by measuring the performance function of the test set. Figure 3 shows applied 
activation functions for the hidden and the output layers. The input features are parameters 
Beq, t, L, fy,𝑓𝑓𝑐𝑐

′, as explained before in the text. 

 
Figure 2. The architecture of the ANN model 

 
(a) Hyperbolic tangent 

 
(b) Linear 

Figure 3. Activation functions: (a) for the hidden layer and (b) for the output layer 

 

4. Quality evaluation 

 
For evaluation of the performance of the best ANN model and comparison with the EC4 

design code, the performance functions: coefficient of determination (R2) as a square of a linear 

I nput  Layer

Hidden Layer

Output  Layer

b1

b2

x1

x2

x3

x4

x5

Nu

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

bias

bias

Input 1

Input 2

Input 3

Input 4

Input 5



Filip Đorđević, Svetlana M. Kostić, Axial strength prediction of square CFST columns based on the ANN model 

7 

correlation coefficient, mean squared error (MSE), and root mean squared error (RMSE) are 
calculated: 

 R2 = � n ⋅ ∑ �yi ⋅ yi�� - ∑ yi
n
i=1

n
i=1  ⋅ ∑ yi�n

i=1

��n ⋅ �∑ yi
2n

i=1 � - �∑ yi
n
i=1 �2� ⋅ �n ⋅ �∑ yi�2n

i=1 � - �∑ yi�n
i=1 �2� 

�

2

 (15) 

 MSE = 1
n

⋅ ∑ (yi - yi�)2 n
i=1  (16) 

 RMSE =�  1
n

⋅ ∑ (yi - yi�)2 n
i=1   (17) 

where yi is a target value, yi� is the predicted value and n is a number of samples. 

These indicators express a level of agreement between the experimental and the predicted 
results. Namely, lower values of MSE and RMSE error and the higher value of R2 show a better 
agreement with the experimental results. 

 

5. Results 

 
Two approaches for predicting the axial capacity of square CFST columns were used with 

different data subsets. Both methods are validated by comparison with the experimental results. 
Table 3 shows the performance scores (R2, MSE, RMSE) for all data. It can be seen that ANN 
has a good performance for training, validation and test data, with a high value of R2 and minor 
values of error functions. 

 
Data Set R2 MSE (⋅10-4) RMSE (⋅10-2) 

  ANN EC4 ANN EC4 ANN EC4 

All 

Training 0.984 - 6.104 - 2.471 - 
Validation 0.980 - 8.634 - 2.938 - 

Test 0.976 - 6.082 - 2.466 - 
All 0.982 0.953 6.480 20.789 2.546 4.559 

Table 3. Performance scores of ANN and EC4 for all data 

 

The power of the LM algorithm is visible from the diagram of performance functions for 
training, test and validation data in Figure 4 and where all functions are very close to each other. 
Figure 5(a) shows the error distribution. The error values are very close to zero for the 
significant part of data. 

 
Figure 4. Performance functions of the best ANN model 
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By looking for a relevant ANN model with associated hyperparameters, there is a tendency 
to reduce the bias of the training set. In the phase of tuning the hyperparameters, the initial 
dataset was divided into the five subsets. In each step, one subset was used for validation and 
the other four for building the model. With the appropriate number of repetitions of this action, 
the average performance of the validation set was obtained. The whole procedure is illustrated 
in Figure 5(b), with marked coefficients of determination (R2) for the selected set of 
hyperparameters. Even with certain oscillations of the R2 value for each subset, the model 
maintained a high global accuracy. 
 

 
(a) Error distribution 

 
(b) Validation subset R2 

Figure 5. Performance of the best ANN model: (a) error distribution and (b) validation subset R2 

 

Figure 6 illustrates the regression lines for the whole dataset of 1022 samples, with 
coefficients of determination presented in Table 3. Obviously, the ANN model with LM 
algorithm better agrees with experimental results (R2 = 0.982) than EC4 equations (R2 = 0.953), 
with lower value of the MSE and RMSE errors. 

 
(a) ANN model 

 
(b) EC4 

Figure 6. Regression lines for axial capacity of all data: (a) ANN model and (b) EC4 

 

Under conditions for a categorization of stub and slender columns given in Section 2, Table 
4 shows the performance scores of the adopted ANN model when the dataset is split into two 
datasets: one for stub columns and one for slender columns. For both types of columns, the 
ANN model gives more accurate results than EC4. This is especially significant for slender 
columns. A similar conclusion about the performance of the EC4 design code is proposed by 
Đorđević and Kostić [1] and Nguyen et al. [17]. 
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 Stub columns Slender columns 
Score ANN EC4 ANN EC4 

R2 0.982 0.965 0.976 0.901 
MSE (⋅10-4) 7.765 21.707 3.867 18.925 

RMSE (⋅10-2) 2.787 4.659 1.966 4.350 

Table 4. Performance scores of ANN and EC4 for stub and slender columns 

 
Significant improvement in the prediction of the column axial strength obtained by the 

ANN model compared to EC4 is visible in Figure 7. This figure illustrates the results from 
Table 4, and presents the model's accuracy for predicting the compressive strength of stub (685 
samples) and slender (337 samples) columns. An important note is that only 276 samples meet 
all of the EC4 requirements given in Table 2, but even for that narrow range of data, the ANN 
model has better accuracy (R2 = 0.985) than the EC4 design code (R2 = 0.979). 
 

 
(a) ANN model – stub columns 

 
(b) EC4 – stub columns 

 

 
(c) ANN model – slender columns 

 
(d) EC4 – slender columns 

Figure 7. Regression lines for axial capacity: (a) ANN model – stub columns, (b)EC4 – stub columns,  

(c) ANN model – slender columns and (d) EC4 – slender columns 

 
The weights and biases obtained by the artificial neural network model with the best 

performances are used for the expressions of axial capacity. This equation can be used for a 
wider range of the input parameters than equations recommended by EC4 design code. 
Empirical equations are given below. 
 
5.1 Empirical equations 
 

In this section, the proposed empirical equations from the best trained ANN model for the 
calculation of the axial strength of CFST columns (Nu

ANN) are presented. 
 

 Nu
ANN=Nu,1-6

ANN +Nu,7-10
ANN +Nu,11-b

ANN  (18) 

Nu,1-6
ANN = 0.36942⋅H1

' +0.17561⋅H2
' +0.85246⋅H3

' +2.11462⋅H4
' +0.25185⋅H5

' -0.75579⋅H6
'  (19) 
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 Nu,7-10
ANN  = -0.72015⋅H7

' -0.28088⋅H8
' +0.03985⋅H9

' -0.22153⋅H10
'  (20) 

 Nu,11-b
ANN  = -0.64204⋅H11

' +0.29962⋅H12
' -0.19279 (21) 

H1
' =Tanh(-2.99785⋅Beq+0.03824⋅t+2.30045⋅L-1.22101⋅fy-1.41724⋅fc

' +1.74681) (22) 

H2
' =Tanh(0.22214⋅Beq-1.07706⋅t-0.28860⋅L+1.93483⋅fy+1.57035⋅fc

' +1.25465) (23) 

H3
' =Tanh(-3.19831⋅Beq+0.19453⋅t+1.49455⋅L-0.26289⋅fy+1.05999⋅fc

' +2.36753) (24) 

H4
' =Tanh(1.43075⋅Beq+0.29089⋅t-0.21691⋅L+0.31746⋅fy+0.38075⋅fc

' -0.42691) (25) 

H5
' =Tanh(-1.15582⋅Beq-0.59118⋅t-0.32937⋅L+1.44036⋅fy+0.17081⋅fc

' -2.10676) (26) 

H6
' =Tanh(-0.51972⋅Beq-1.93479⋅t-0.31072⋅L+0.36646⋅fy-1.54064⋅fc

' -1.16398) (27) 

H7
' =Tanh(-0.56840⋅Beq-0.83197⋅t-0.00251⋅L+0.46419⋅fy-0.73562⋅fc

' -1.76459) (28) 

H8
' =Tanh(-0.58226⋅Beq+0.86928⋅t-0.65778⋅L+0.53551⋅fy+0.73365⋅fc

' +0.65797) (29) 

H9
' =Tanh(-0.77780⋅Beq-1.36496⋅t-1.56830⋅L-0.83646⋅fy+1.78459⋅fc

' -1.13412) (30) 

H10
' =Tanh(-2.69378⋅Beq+1.68626⋅t-0.26690⋅L+0.29521⋅fy+0.74424⋅fc

' -1.93671) (31) 

H11
' =Tanh(0.73053⋅Beq+1.79608⋅t+0.47584⋅L-0.34696⋅fy+1.85566⋅fc

' +1.45230) (32) 

H12
' =Tanh(-1.50786⋅Beq+0.14294⋅t-0.25338⋅L+0.14615⋅fy-1.86013⋅fc

' -2.67629) (33) 

6. Conclusions 

 
In this study, the efficient Levenberg-Marquardt algorithm was used to predict the axial 

capacity of square CFST columns with the application of artificial neural networks. The best 
ANN model was constructed according to the least measure of the performance function (error), 
conducted on the validation set. The proposed ANN model is stable for different subsets and 
conditions with high performance, and the model was verified by comparison with the 
experimental results. 

The results show that the proposed ANN model with recommended empirical equations, 
based on a one-layer feed-forward network, has a significant advantage over the EC4 design 
code in predicting the ultimate compressive strength Nu for a wider range of data. The 
coefficient of determination (R2) for all data was 0.982. Also, the results achieved for the stub 
and slender columns are 0.982 and 0.976. Slightly better results were obtained with a relatively 
restricted dataset (276 samples), that met all EC4 criteria, with the R2 values of 0.985 for all 
data, 0.983 for stub and 0.989 for slender columns. Therefore, the ANN is a robust and powerful 
tool for predicting the axial capacity of square CFST columns. 
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