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Abstract

Services based on machine learning are increasingly present in our everyday lives.
While such application make promises of its improvement, they also pose considerable
risks if machine learning models do not perform as expected. One specific issue related
to the quality of learnt models which has recently gained considerable visibility is their
unfairness. Namely, it has been noted that the decisions of machine learning models
sometimes reflect human biases against some historically discriminated groups of people,
thus unintendedly perpetuating the discrimination. In this paper we discuss why is the
fairness of machine learning models important, by revisiting some notable examples of
discrimination committed by the models and discuss different notions of fairness. We
discuss how to measure the fairness of such models and how to achieve it, reflecting on
both algorithmic and non-technical aspects of this effort. We present several fairness
ensuring methods representative of different fairness paradigms, one of them being our
own.
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1 Introduction

In the previous decade, machine learning achieved great success in numerous appli-
cations, starting from computer vision [20, 9], but quickly penetrating other fields like
natural language processing [24, 8], game playing [29, 30, 23], and many others, often
surpassing expectations and even surpassing the performance of human experts.

Many of these achievements were quickly integrated in to services we use at everyday
basis and can influence our life experience. Some examples include personal assistants
on mobile phones, face recognition systems, information retrieval systems, language
processing and translation services, content and product recommendation systems, etc.
In recent years, steps have been taken to introduce machine learning in health, legal,
financial, security, and employment related decision making [17, 4, 6, 25, 12, 3, 31]. Thus,
machine learning might have an opportunity to affect the functioning of the society for
better or for worse.

One specific issue related to machine learning models of critical importance in this
context is their (un)fairness [22, 7]. Namely, in recent years it has been observed that
machine learning models tend to learn human biases present in the data from which they
learn and to perpetuate discrimination against historically discriminated groups. One
might have hoped that use of artificial intelligence would lead to less biased decision
making, but due to learning from human generated data, the issues persist. However,
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this observation sparked a new field of machine learning, which deals with mitigation of
such biases and fair decision making. Numerous advances have been achieved both in
algorithm design and in societal awareness of the problem [22, 7].

In this paper, we aim at pointing out why fairness is an important topic in machine
learning and we discuss different notions of fairness. Besides explaining why, we also dis-
cuss how is fairness achieved, emphasizing importance of both the societal and technical
aspects. We discuss a number of important methods for improving fairness of machine
learning models, and present our own method which merges two existing paradigms while
aiming at better interpretability of the learnt model [26]. We also reflect on the existing
challenges in the field and argue that societal aspects of machine learning applications
are at least as important as technical aspects which currently draw most attention in
machine learning related discourse.

2 Why?

Fairness is sometimes considered a fringe topic of machine learning, while the spot-
light is taken by the development of new models with better generalization performance,
specific inductive biases suitable for different kinds of data, greater computational effi-
ciency, etc. While such an approach might be understandable in the infancy of a tech-
nology, in its mature phase in which it performs well enough to influence the everyday
experience of millions of people, societal impact of the technology should be considered
as one of its primary aspects. In order to answer why is the fairness in machine learn-
ing important, we inspect some of the most notable examples of unfairness of machine
learning models. They indicate which kind of negative societal impact such models can
make. While a sequence of examples may convince us of the importance of the issue, no
discussion of this kind would be complete without considering what we mean by fairness.
Therefore, we also briefly reflect on the notions of fairness considered in the field.

2.1 Notable FExamples of Unfairness in Machine Learning

There has been a considerable amount of reports on the unfairness of machine learn-
ing models and decision making algorithms in general. Well known example is related to
the system COMPAS used at US courts in order to assist decision making regarding re-
lease or detention based on the estimated risk of a person committing another crime [2].
It has been determined that the system has higher false alarm rate for African- Americans
than for Caucasian individuals.

Until recently, when translating from the languages which lack grammatical gender
(e.g. Turkish) to languages which have it, Google Translate preferred masculine form
for some occupations (e.g. doctor) and feminine form for some others (e.g. nurse) [27].
Recently, the issue was resolved by offering translations for both grammatical genders.

In the evaluation conducted by the US National Institute for Standards and Technol-
ogy it has been noted that many facial recognition models exhibit different error rates
over different demographic groups, differing even in the order of magnitude [14]. On the
other hand, the best performing models exhibited negligible differences. Facial recogni-
tion software in digital cameras has exhibited higher false detection rates of blinking for
Asian individuals.! The consequences of machine learning bias in future might be even
more serious. For instance, an autonomous vehicle which would not recognize individuals
of a specific demographic group, might endanger them in traffic.

"http://content.time.com/time/business/article/0,8599,1954643,00.html
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2.2 Notions of Fairness

There is no single definition of fairness. In different times or in different cultures
today, the notion can be understood in different ways and has strong ideological un-
dertones. Therefore, the question belongs to a broad spectrum of social sciences and
philosophy and has been discussed many times before the advent of artificial intelli-
gence. However, in order to deal with fairness in in the context of artificial intelligence,
one needs to operationalize the notion. In the light of the previous discussion, the field,
does not deal with a single definition, but instead provides a collection of tools which
can be used in hope of achieving fair model-based decisions with respect to different
mathematical definitions. This approach has its own pitfalls as will be discussed later.

Still, the notions of fairness come in two major groups. The first one is so called
individual fairness [11, 21, 5]. It postulates that similar individuals should be treated
similarly. Of course, the question of adequate similarity measure can be a subject of
debate. The principle may sound sensible, but it is not without its shortcomings. While
it can guard against random whimsical injustice against an individual, it does not guard
against structural and historical discrimination towards some vulnerable groups defined
by some specific feature like gender or race. Two persons may be similar in some respects
for instance due to their origins in a segregated minority community and for the same
reasons be dissimilar in those respects from people outside of the community. Using
a similarity metric sensitive to such distinctions will allow discrimination against the
members of the community, although it would treat similar individuals in a similar way.
Another major understanding of fairness is group fairness [11, 15, 26] which stresses
an importance of treating different groups of people equally in order to avoid historical
discrimination based on membership of individuals in specific groups. A well intentioned
effort might aim at achieving both kinds of fairness. However, there exist impossibility
results which prove that different kinds of fairness cannot be achieved simultaneously [10,
19]. Therefore, defining fairness, making trade-offs, and taking responsibility which such
decisions involve will not be resolved by technology alone. This conclusion puts the
question of fairness in artificial intelligence at hands of the larger society.

3 How?

In this section we discuss the means of achieving fairness in machine learning models.
Such discussions usually focus on technical aspects like models and algorithms. However,
recently it has been convincingly argued that in order to ensure fairness a sequence of
ethical and societal considerations should precede technical ones [28, 13]. Therefore, we
proceed in such fashion.

3.1 FEthics Before Technicalities

A major flaw in current approach to fairness in machine learning, as recently rec-
ognized, is disproportionate focus on mathematical abstractions which do not capture
the complexity of the issue and the reliance on engineering practices commonly used
in software development, which can even exacerbate it or at least hinder its resolution
[13, 28]. An alternative approach which is suggested is a sociotechnical approach which
insists on including societal considerations when designing a system which will exist and
act in a societal context. A recommended sequence of considerations when building a
machine learning solution is as follows.
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e Should the solution be built in the first place? If a purpose of the system is itself
not legitimate and if it will hurt individuals in general or exacerbate social inequity
and hurt vulnerable groups, no algorithmic improvement will make it fair [13]. For
instance, mass surveillance technologies which governments can use to intrude into
peoples privacy, subvert their rights, etc., cannot be made fair by any kind of
improvement.

e If it is built, should it be banned? The fact that a system is in operation does not
justify its use if it should not have been built in the first place [13].

e Is the proposed solution really a solution to the problem? Maybe the best solution
is not based on technology at all [28].

e Does the solution affect the society in a predictable way or will its introduction
cause different problems [28]?

e Is the formal mathematical definition of fairness used in the solution adequate?
Fairness metrics are formulated over outcomes and it is very hard to properly
take into consideration full context in which such outcomes occur, but the context
affects the judgement of outcomes’ fairness [28].

e Does the solution design accounts for all relevant societal factors? Most often
technical approach abstracts away most of the societal context. However, the
context in which it will operate will determine if it will mitigate the problem or
even exacerbate it. While the fairness ensuring method might ensure that the
fairness constraints on the outputs are satisfied, the final outcome of the process in
which the system operates also depends on the way such outcomes will be treated
by other actors in the process and failure to account for that finally does not lead
to fair outcomes [28].

e Can the solution developed for one societal context be ported to another one? If
the new context in which the solution should operate considerably changes from
the previous one, the solution might not be adequate for the new one [28].

e Who's values are being incorporated in the system? If a natural language process-
ing system (e.g., for question answering) is trained on large text corpora available
at the internet (e.g., Wikipedia, news portals, etc.), it will incorporate the domi-
nant views of potentially small but privileged groups which generate most of such
content, with views of other groups being disregarded [13].

The previous points do not mean that the technical methods are worthless, but that
more elements should be considered than they are considering today.

3.2 Metrics

Metrics serve a purpose of mathematical formalizations of different notions of fairness.
Shortcomings of such efforts are already highlighted. We distinguish between group
fairness metrics and individual fairness metrics.
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Group fairness These metrics are meant to indicate if decisions y of a classifier are
disproportional between different groups as defined by the value of some sensitive feature
s (e.g, gender or race). In this paper we assume that s is a single binary variable, although
more general approach is possible. There is a multitude of such metrics, but we focus
on three commonly used ones for illustration purposes. First such metric is absolute
statistical parity difference [22, 7]:

ASD = |P(y = 1s = 0) = P( = 1]s = 1)| (1)

Low values of ASD mean that both groups have approximately the same probability
of being labeled 1 (e.g., bank loan granted) by the model. Such notion of fairness is
called statistical parity or demographic parity. Second common metric is absolute equal
opportunity difference [22, 7:

AEOD = [P(§ = 1ls =0,y = 1)~ P(§ = 1|s = L,y = 1) (2)

This measure can be interpreted as a difference of opportunities between unprivileged
and privileged group. Values of AEOD close to zero are desirable. Such notion of fairness
is called equal opportunity. The third often used metric is average odds difference [22, 7.
It can be formulated as:

1. X
AOD = (|P(y =1s =0,y =0) = P(y = s = 1,y = 0)| (3)
HIPI =1s=0y=1)—-PFy=1s=1y=1)) (4)

Values of AOD close to zero are desirable. Such notion of fairness is called equalized
odds.

Individual fairness These metrics focus on differences between individuals. One
intuitive metric is computed by setting a threshold on similarity of the individuals and
averaging the absolute differences between outcomes for individuals which satisfy the
given similarity threshold [21]. Of course, there is an issue of selecting appropriate
similarity threshold, which has to be done based on domain knowledge. Another fairness
metric is based on couterfactuals and causal models. Let u be unobserved features and x
and s observed features of which feature s is considered sensitive. Each observed feature
is assumed to be a function of other observed features and of unobserved features. Let F
be a set of all such functions. Let ys.4(u) denote the value y would take if the feature
s had taken value a and the value of features u did not change. This value is called a
counterfactual and can be explicitly computed given u, x, and F'. Then, the difference

[P(Yse-0(u) = y[x,8) = P(yse-1(u) = y|x, )|

reflects the difference in treatment which the same person would receive had it belonged
to a different group [21]. However, the computation of counterfactuals is a hard problem
in practice.

Again, one should be aware that these metrics cannot be optimized simultane-
ously [10, 19] and that they alone can hardly fully capture the intended meaning of
fairness, so they should be used with caution.
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3.8 Methods

There is a multitude of methods aiming at different notions of fairness [22, 7]. A
naive idea of how to obtain fairness would be to refrain from using sensitive features
in training. This is called fairness through unawareness. Such an approach is thwarted
by correlations of other features which we perceive as not sensitive themselves with the
sensitive feature. For instance, persons address might correlate with its race. Therefore,
more involved approaches are needed, but approaches which take sensitive features into
consideration and are therefore able to check the fairness of their predictions. This
is called fairness through awareness [11]. We will discuss representative examples of
different kinds of methods, and also present our own method which merges some of the
existing paradigms.

3.3.1 Group Fairness Methods

There are three major groups of group fairness methods: pre-processing based, in-
processing based, and post-processing based ones. We discuss their representative meth-
ods in turn.

Pre-processing The idea of pre-processing approaches is to treat the learning method
as a black box and achieve the fairness of the resulting model by manipulating its inputs.
For instance, the instances from the training set themselves can be altered or given
different weights. One simple approach proposes reweighing the instances in order to
compensate for the bias they exhibit [18]. Specifically, if the sensitive variable s and the
class variable y were statistically independent, their joint probability would factorise
as P(s,y) = P(s)P(y). Therefore, in order to compensate for their dependence, each
instance should be weighted by a term

P(s)P(y)
P(s,y) (5)

where specific values from the instance are used for the variables. All probabilities
involved are easily estimated from the training data by counting, given that s and y are
categorical.

In-processing In-processing approaches alter existing or propose new optimization
problems and methods in order to achieve the fairness of the learnt model. Possibly a
predominant approach aims at learning a mapping which will provide fair representation
of the input data (e.g., with reduced or eliminated bias) and learning the classifier over
such representations. One specific method proposes solving the following optimization
problem [1]:

n(%lgn <]Ex7y7SNP(X7Y7S) [L(fs(g0(x)),¥)] = B mfx Ey y.s~P(x,y.s) LMy (90(x)), s)}) (6)

where P(x,y,s) is the distribution of the data, L is the loss function, gy is a func-
tion producing fair representation of the data, fs predicts the class of an instance, hy,
predicts the sensitive feature, and ( is a hyperparameter. Obviously, the optimization
problem is solved by finding the representation of the data from which the class can be
well predicted, but even the best model cannot predict the sensitive feature well. The
importance of these two objectives is weighed by 5. The problem is solved by optimizing
adversarially [1].
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Post-processing Post-processing techniques treat learning algorithms as black boxes,
but instead of manipulating the data to achieve fairness (like pre-processing techniques),
they manipulate the outputs of the classifier. Such manipulation can be performed in
multiple ways. For instance by modifying the thresholds which translate the score which
model provides into its predictions (e.g., for logistic regression the threshold need not
be 0.5) or by adding constraints the predictions need to satisfy and by finding the most
similar predictions to the ones the model has provided, but which satisfy such constraints.
One such approach aims at achieving equalized odds (or equal opportunity by relaxing
constraints), mentioned before [16]. Let y be the true value of the target variable and y
the prediction given by the model. Denote

() = (P =1s=5y=0),P(y=1s=sy=1)) (7)

The first element of the pair is a false positive rate and the second one is a true positive
rate, for a group satisfying s = s. Also let Ps(y) denote the convex hull of the set
{(0,0),7s(¥),7s(1 —¥),(1,1)} (we assume that it holds y,y € {0,1}). The points of
this set represent all easily achievable models given the trained model. Namely, it is
easy to obtain the model achieving the performance (0,0) by classifying all instances as
negative and to achieve the performance (1,1) by classifying all instances as positive.
The performance 74(y) is already achieved by the original model and the performance
vs(¥) by the model predicting the opposite of the original one. Other points in the
convex hull are easily achieved by interpolating in between, for instance, by adjusting
the threshold on the score the model provides. Then, the proposed optimization method
is:

m;n EL(y,y) (8)
s.t. 0(¥) € Po(¥), n(¥y) € A(Y) (9)
() =n(y) (10)

The objective function requires the difference between the original and post-processed
predictions to be small. The fist constraint means that the model is achievable in a sense
defined before. The second constraint obviously enforces equalized odds.

Reweighing in-processing The advantage of the pre-processing reweighing approach
is that it provides interpretable weights (which can indicate which instances are the
source of bias). However, it does not perform end-to-end optimization of the objective
function and is therefore suboptimal. The in-processing representation learning approach
is not interpretable, but performs end-to-end optimization. Recently, we proposed to
merge these two paradigms and obtain the best of two worlds in one method [26]. In its
simplest form, the proposed optimization problem is stated as:

Hgliqbn mf)( Ex,y,SNP(x,y,s) [w : (a log PTZJ(S|X) - IOg P¢(Y|X))] (11)
’ w= fo(x)

where fy is a function which computes weights for the given instance, ¢ and v parametrize
learnable conditional probability distributions of the class and the sensitive feature, re-
spectively, and « is a hyperparameter. The optimal weights w reweigh the training
instances in order to obtain the best prediction of the class while even the best model
cannot accurately predict the sensitive feature. The importance of these two objectives
is weighed by «. The problem is, again, solved by optimizing adversarially [26].
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3.3.2 Individual Fairness Methods

Individual fairness methods are based on the idea that similar individuals should
obtain similar treatment. In their seminal paper [11], the authors propose the following
approach. Let Py(x,y) be the distribution of the data, Py(y|x) the parametrized con-
ditional distribution over a categorical variable y, d the distance over feature vectors x,
and D the divergence between distributions over y. Then, the fair classifier is obtained
by solving the following optimization problem:

min IEx,yNP(x,y)L(ya y/) (12)
y'~Po(y'[x)
s.t. D(P(-|x1), P(-]x2)) < d(x1,x2) for all x;, X2 (13)

An approach for fair regression was formulated with a similar idea, but instead of
constraint based formulation, a fairness related penalty was proposed [5]. Let fy be a
parametrized regression model and let S; and Ss be two datasets, each representing one
group with respect to the values of some sensitive binary variable. Then, the penalty is
formulated as:

- Z d(y1,y2)(fo(x1) — fo(x2))? (14)

S1l|S
91155 (x1,y1)€51
(x2,y2)€S2

If a causal model of the phenomenon of interest is known, one can rely on counter-
factual fairness method [21]. However, such models are hard to establish, so we do not
delve deeper into the details of the method.

4 Conclusions

In this paper we discussed the issue of fairness of machine learning algorithms. Given
their current and even greater future influence on humans, we argue that their fairness
should be considered one of the topics of primary interest when considering the future
of these algorithms. We discussed notions of fairness, the metrics used to measure and
formalize them, and methods used to optimize them in order to achieve fair outcomes,
one of them being our own method which merges two existing paradigms. We also
stressed the existing challenges related to the societal context of application of these
algorithms which will have to be paid more attention to in future work on this topic.
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